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Chaotic transport in the symmetry crossover regime with a spin-orbit interaction
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We study a chaotic quantum transport in the presence of a weak spin-orbit interaction. Our theory covers the
whole symmetry crossover regime between time-reversal invariant systems with and without a spin-orbit
interaction. This situation is experimentally realizable when the spin-orbit interaction is controlled in a con-
ductor by applying an electric field. We utilize a semiclassical approach which has recently been developed. In
this approach, the non-Abelian nature of the spin diffusion along a classical trajectory plays a crucial role. New
analytical expressions with one crossover parameter are semiclassically derived for the average conductance,

conductance variance, and shot noise. Moreover numerical results on a random-matrix model describing the
crossover from the Gaussian orthogonal ensemble to the Gaussian symplectic ensemble are compared with the

semiclassical expressions.
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I. INTRODUCTION

A chaotic quantum transport of an electron in a cavity is
caused by either implanted impurities or bumpy boundaries
and provides directly measurable quantum signatures of
chaos,! such as the conductance variance. Universal aspects
of a chaotic transport have been investigated by means of the
random-matrix theory (RMT).2 In the RMT, quantum sys-
tems are classified into symmetry classes. A chaotic system
with time-reversal symmetry is described by the Gaussian
orthogonal ensemble (GOE). When the time-reversal sym-
metry is broken by applying a magnetic field, the Gaussian
unitary ensemble (GUE) becomes a suitable model. If a sys-
tem with time-reversal symmetry has a spin-orbit interaction,
one needs to employ the Gaussian symplectic ensemble
(GSE).

We consider the case that two leads are attached to a
cavity and the number of the lead channels are N; and N,. An
electron transport in the cavity is described by the scattering
matrix.>* Replacing the scattering matrix by a random ma-
trix, the RMT phenomenologically predicts the average con-
ductance G, conductance variance Var G, and shot noise P at
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with N=N,;+N,. Here B=1, 2, and 4 correspond to the GOE,
GUE, and GSE symmetry classes, respectively. These ex-
pressions include the contributions from the spin degrees of
freedom.” The constants G, and P, are Gy=e?/(mh) and
Py=2¢3|V|/(mh), respectively, where e is the unit electric
charge and V is the bias voltage. If N, is equal to N, and very
large, the leading term of the shot noise is insensitive to a
change in the symmetry.

When a very weak magnetic field is applied to the cavity,
the time-reversal symmetry is only partially broken. In this
case, a crossover from the GOE to GUE is observed. This
GOE-GUE crossover regime can also be analyzed by a para-
metric RMT model, and analytic predictions describing a
chaotic quantum transport are known.® Recently, a chaotic
transport in the GSE-GUE crossover regime was also studied
within the RMT framework.® In this regime, a very weak
magnetic field breaks the time-reversal symmetry of a sys-
tem with a spin-orbit interaction.

The aim of this paper is to study another case, the cross-
over from the GOE to GSE, in which the system has a very
weak spin-orbit interaction preserving the time-reversal sym-
metry. In the experimental point of view, the GOE-GSE
crossover can be realized, if the spin-orbit interaction (or
Aharonov-Casher effect) is controlled by applying an electric
field in a chaotic conductor.!®!! In this case, a parametric
RMT model is also known,'>!3 and the diagrammatic pertur-
bation theory has been used to evaluate some transport
properties.'4~!7 Here we employ a semiclassical approach
which has recently been developed.'®?3 In a semiclassical
evaluation, the transmission amplitude is treated by the path-

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.82.125322

KEIJI SAITO AND TARO NAGAO

integral method, where all the classical paths must, in prin-
ciple, be taken into account. However recent studies clarified
that almost the same but partially time reversed pairs of clas-
sical trajectories contributed to the conductance?*~?’ so that
the calculation was greatly simplified. Then it was shown
that the semiclassical approach could precisely reproduce the
RMT predictions in Eqgs. (1)-(3).21-2> Moreover, when a
similar approach is applied to the parametric spectral corre-
lations in the GOE-GUE, GUE-GUE, GOE-GOE, and
GSE-GSE regimes, it can also reproduce the RMT
predictions.?8-3!

Thus the semiclassical approach has become a practical
tool to find a new prediction, even if the RMT analysis is
difficult. As this approach was already applied to the para-
metric spectral correlations in the GOE-GSE crossover
regime,?' we naturally expect that it can be used in the analy-
sis of a transport.

Considering the non-Abelian nature of the spin diffusion
along the classical trajectories, we extend the semiclassical
technique to derive analytic expressions for the transport
properties. Our results on the average conductance, conduc-
tance variance, and shot noise are given in Egs. (25), (31),
and (35). The crossover from the GOE to GSE is controlled
by one parameter depending on the diffusion constant of the
spin. The GOE and GSE results are reproduced in the limit-
ing cases of the parameter.

This paper is organized in the following way. In Sec. II, a
semiclassical expression of the transmission amplitude is
presented. We put a stress on the statistical aspects of the
expression. In Sec. III, using the semiclassical expression,
we calculate the average conductance, conductance variance,
and shot noise. In Sec. IV, these results are compared with
numerical calculations on a random-matrix model. We finally
summarize the paper in Sec. V.

II. SEMICLASSICAL EXPRESSION OF THE
TRANSMISSION AMPLITUDE

The semiclassical theory employs the transmission ampli-
tude Yayay which represents the propagator of a wave packet
from the channel a; in one lead to a, in another lead. Bolte
and Keppeler derived a semiclassical expression of the trans-
mission amplitude with spin variables®?

2 .
— D A\ (4)

t ~
ay,a, T
Ha:ay—ay

where Ty is the Heisenberg time TH:(Z%f)fE. Here Q(E) is
the phase volume density including spin degrees of freedom
at the energy E and f is the spacial dimension. Throughout
this paper, we study the two-dimensional case f=2. Two
leads are assumed to have N; and N, channels, i.e., a;
=1,2,...,N; and a,=1,2,...,N,. The classical action of the
orbit « is S,=[ p-dq, where g and p are the position and
momentum variables.

The stability amplitude is decoupled into two factors A,
and A,. The first factor A, accounts for the stability in the
position and momentum space and the second factor A,
originates from the spin dynamics. Both A, and A, are
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uniquely determined, when the classical trajectory a gov-
erned by the microscopic Hamiltonian is specified. However
their statistical behavior is independent of the details of the
trajectory. As discussed in Refs. 21, 22, and 33, the stability
amplitude A, is related to the survival probability in the
chaotic cavity. Postulating an ergodic motion in the position
and momentum space, we obtain the following sum rule:

PRNVIEE f dTe N, (5)

a:a|—ay 0

where T/2N (N=N,+N,) can be regarded as the dwell time
inside the cavity so that the inverse is the escape rate. The
escape rate is related to the position and momentum vari-
ables and is unrelated to the spin variables. Hence the dwell
time should be Ty /2N rather than Ty/N. The spin matrix A,
is defined as

A([) — eiqﬁ(z)a'z/ZeiH(t)O'X/Zeiz//(I)a'z/Z (6)

along a trajectory @, where o=(0,,0,,0,) consists of the
Pauli matrices. The time evolution of the Euler angles
[y(1),0(t),dp(r)] is microscopically determined by the
Schrodinger equation

ih%A(r) — HAQ), (7)

where H is the effective Hamiltonian which describes the
spin-orbit interaction. We assume that the spin dynamics is
subdominant in the semiclassical limit. That is, the dynamics
of the position and momentum variables are determined by
the spacial Hamiltonian without spin degrees of freedom
while the spin is influenced by the momentum motion via the
spin-orbit interaction. The effective Hamiltonian in Eq. (7)
describes such a subdominant dynamics of the spin variables.
A similar hierarchical structure has successfully been em-
ployed to analyze the GOE-GUE crossover regime:?>23-30
the resulting physical quantities are in agreement with the
corresponding RMT expressions. An RMT prediction for the
parametric spectral form factor in the GSE symmetry class
was also reproduced in a similar way.?!

Since bumpy boundaries of a cavity induce a chaotic be-
havior in the position and momentum variables, the momen-
tum effectively plays a role of a stochastic magnetic field.’!
Then the effective Hamiltonian which describes the time
evolution of the spin can be written as

h
H=yoh - <§¢T>, (8)

where vy, is the coupling constant and h
=[h,(1),h,(2),h.(1)] is the effective stochastic magnetic field.
We assume that the classical spin undergoes a Brownian mo-
tion on the Bloch sphere** due to the stochastic magnetic
field satisfying

<<ha(t)ha'(tl)>> = ZD(S(I,D(/ 5(t - t,)s a, al =XY¥,2, (9)

where the brackets ((---)) denote an average over the sto-
chastic process of the magnetic field and D is the diffusion
constant. Then the probability density function of the Euler
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angle P(¢, 0, @) (with the measure sin 6did0d$) obeys the
Fokker-Planck equation

aP
P Y DLP, (10)

where L is the Laplace-Beltrami operator

13&1(&2&2 a2>

—sin 60— —+ -
" sin 696 a0  sin® 0\ 9P 9’

This stochastic dynamics can exactly be analyzed by using
Wigner’s D function.’® Let us suppose that the initial Euler
angles at =0 are o'=(¢',0,¢'). Then the conditional
probability to find the angles at w= (i, 8, ¢b) after time 7 is

D,,.(.6.)

j=0 m=—j n=—j 32772
X{Din,n((ﬂ,’ 0/’¢1)}*e—j(j+l)'y§0Dl' (12)

Here an asterisk signifies a complex conjugate and Wigner’s
D function is defined as

D), (,6,4) = " d), (6)e™, (13)
where
[(G+m)!(j—m)!
‘} =
&l 0) G+m)!(j—n)!

X cos™(6/2)sin™"(6/2) P\ """ (cos 6)
(14)

in terms of the Jacobi polynomials P;{“’b )(x). The index j is an

integer or a half odd integer (j=0,1/2,1,3/2,... and m,n
=—j,—j+1,...
satisfies a normalization condition
T 4ar 47
j _ j 40 j ” f o) =
0 0 0

III. TRANSPORT IN THE GOE-GSE CROSSOVER
REGIME

A. Average conductance

The average conductance G is written in terms of the
transmission amplitude la,.ay A8

N1 N,
——<Tr<tt‘)>— > 2 Tl a)(t)aya} (15)
a;=1 ay=1

PHYSICAL REVIEW B 82, 125322 (2010)

FIG. 1. The RS pair. The solid and dashed curves are, respec-
tively, @ and vy orbits in the text.

Here the transmission matrix t is a 2N; X 2N, matrix which
consists of the 2 X2 blocks la,.a, Then a semiclassical ex-
pression

<Tr(tt*)>=T£<E > AaA’;«Tr(AQA;)»eWSa—Sy)>
H

ay,ay a,y.a;—ap
(16)

follows from Eq. (4). Here the brackets (- - -) mean an energy
average, which eliminates the fluctuations of the physical
quantities. If the difference between the actions S, and S, is
sufficiently large, the exponential term ¢//#(Sa=5y rapldly 0s-
cillates in the semiclassical limit #— 0, which eventually
vanishes after averaging. Hence, in order to give a finite
contribution, the trajectories a and 7y are mutually almost the
same. Then the identical trajectories a=1y yield the first-
order approximation, which is referred to as “the diagonal
approximation.”3® These mutually identical trajectory pairs
yield the following contribution:

(It = S STEADAL= 3 DAL

Hayay, «a Hayay, «
4 * 2N|N.
= —NN, f dTePNTWT = =2, (17)
Ty o N

Here we used the sum rule Eq. (5) for the stability amplitude
A,. In this calculation, a product of the spin matrices is
reduced to the identity matrix and the trace yields a factor 2.
The diagonal approximation does not discriminate the sym-
metry classes.

The second-order approximation comes from the Richter-
Sieber (RS) pairs?®?’ drawn in Fig. 1. In the RS pair, two
trajectories come close to each other in the encounter region
and go in the opposite directions on one loop. We can sym-
bolically write RS pairs (see Fig. 1) as

a.L,EL,EL;,

"y:LlEZ2EL3 N

where E implies one of the two trajectory segments in the

encounter region where two loops are connected and E im-
plies the time reverse of E. The loops are denoted as L, L,,

and L, respectively, and Zj (j=1,2,3) is the time reverse
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of L, Using these notations, we can write the RS pair con-
tribution as

(Tr(tth)), = Ti > X

Hayay o1 ELEL,

(AL AT AT 85),

YL ELyEL,
(18)

where AS is the action difference S,—S,. The spin matrices
A, and A, are factored into the loop and encounter parts as

A= ALIAEALZ(AE)_IAL3s (19)

A= ALIAE(ALZ)_I(AE)_IAL3' (20)
Along the trajectories the non-Abelian nature of the spin op-
erators must be taken into account. A time-reversal operation
of a spin matrix is realized by a matrix inversion.

We divide the whole time elapsed on a trajectory into the
loop and encounter parts, i.e., Ty, T,, and 75 for L;, L,, and
L, respectively, and f,,. for E. It should be noted that the
existence of the encounter affects the survival probability
e CNTWT in Eq. (5):2122 if one of the two orbit segments in
the encounter is inside the cavity, the other segment must
also remain inside. Hence the survival probability is modi-
fied into e~ N/Tm)(Tfenc),

In the encounter region, the classical actions of the two
trajectories are slightly different. The action difference can
be estimated by using the coordinates (s,u) along the stable
and unstable manifolds within the ranges s,u € [-c,c].2"??
The time duration f,,. inside the encounter region is related

to the Lyapunov exponent N as f.,.~ ilnﬁ, and the action
difference is expressed as

((Tr(AaN;))):fdeIdezde3dwElTr{(AL2)z}g(le,Tl

2
=— 1 +3e2%PT2,

Using the above formulas, we find that the RS contribution is

2NN,
Ty

(Tr(tt)), =

isulh

_ 2NN,

H

j AT\ dTydTs f dsdu—

0 Tenc

The last line of the above formula is obtained by the follow-
ing criterion: after expanding the formula in #.,. and integrat-
ing each term over (s,u), any term dependent on t.,. van-
ishes in the semiclassical limit, and a finite contribution

" ONIT) T+ T3+ T3 v1en0) (3 o2%DTs _ )=
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(vii)

(viii) (ix)

FIG. 2. The diagrams of the third-order contributing to the
conductance.

AS=us. (21)

The number density of encounters in a trajectory with an
elapsed time T=T,+T,+Ts+2t,,. is evaluated as*"-??

dT,dT,

w(s,u)dsdu=f T,15>0 dsdu (22)

T 4Ty <T=21¢n

enc

by taking account of T, T,>0, and T3=T-T,—T5— 2ty
>0.
On the other hand, the spin-diffusion term is calculated as

0,0’ O)g(sz’ T2

0’ 0’ O)g(wL3’ T3

0, 07 O)g(wLE’ z‘en(; 0’ 0, O)

(23)

f dsduf dTw(s,u)e_(2N/TH)(T_tenc)«Tr(AaA;)))
—C 1

NN, ( 3 )
(N, +N,)? 1+ DTyIN)
(24)

comes only from the terms independent of 7.

The third-order contribution to the average conductance
comes from the diagrams drawn in Fig. 2. In the Appendix,
the spin-diffusion terms are listed. Using these results, we
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arrive at an expression of the average conductance

£_2N1N2+N1N2<1 3 )
Gy N N? 1+¢
NN, 3 3 3 ,
- O(1/N?),
+2N3{ etaee a0

(25)

where £ is the crossover parameter defined as &= ygoDTH/ N.
We can easily check that Eq. (25) reproduces the 1/N expan-
sions of the GOE and GSE formulas (1) by taking the limits

<{Tr(tﬂ>}2>—T—E 22 2 (AGARA A eSSy (Tr(A AR Tr(A ,AD))).

Hay.ay cj.cy a.B:a1—ay y,6:c1—c)
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£—0 and £— oo, respectively. It follows from this result that
only one parameter £ is necessary to describe the GOE-GSE
CTOSSOVEr.

B. Conductance variance

The conductance variance Var G is written in terms of the
transmission matrix t as

Var

= {Tr(tt")}?) — (Tr(tt)))*. (26)

0

The semiclassical expression of the first term is

(27)

Let us first adopt the diagonal approximation, for which we have two types of contributions. One is given by setting &=/ and
v= 46, where a,, a,, ¢, and ¢, are all independent. The other choice is =4, y=p and a,=c,, a,=c,. The numbers of possible
channel combinations are N%N% and N|N,, respectively. These contributions are summed up to yield

({Tr(tth}y), = —2 42, 2
H ap,cy a=paj—ay
a,cy y=0.ci—cy

Here the spin-diffusion term is

at afVoYs py Lyl

(Tr(AAD ) = f dwdw

= 1+ 3 2K T Ty (29)

where T, and T, are the times elapsed on the trajectories «
and v, respectively. Using this expression, one can obtain the

diagonal contribution
4NIN3 NN, 3
+ 1+ . 30
N? N? (1+9? (30

To go beyond the diagram approximation, we note that the
next order diagrams are classified into d families and x fami-
lies as shown in Fig. 3:*> d quadruplets are drawn in the

{Tr(tt")}?), =

(vi)

(viii)

FIG. 3.
variance.

The diagrams contributing to the conductance

N

2 X

aj=c; a=8a;—ay

AL AT LD (28)

ag=cy y=paj—ay

diagrams (i)—(vii) while x quadruplets in (viii).
Let us write the next order term as

Tr(tt")}?), = (N{N3 + N Nz)(— + 1%) N 1\/2

Here the coefficients d;, d,, and x; are obtained from the
families of quadruplets. The coefficient d; comes from the
diagram (i): quadruplets consisting of one diagonal pair and
one RS pair. On the other hand, many diagrams have to be
taken into account to calculate d,, i.e., (1): quadruplets con-
sisting of one diagonal pair and one pair contributing to the
O(1/N) term in the expansion (25) of the average conduc-
tance, (2): two RS pairs, and (3): the diagrams (ii)—(vii)
shown in Fig. 3. The coefficient x; is calculated from the
diagram (viii) in Fig. 3. Considering the contributions from
these diagrams, we obtain

d=4- 2
1= 1+§9
des 12 21 6
=5- + + ,
g 1+¢ (148> (1+8°
_ 3
T T ar e

Then we find the expression of the conductance variance for
N;>1 and N,>1 as
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Var G NiN3 5 6 0( 1) G31)
= + +0|—|.
G; N* (1+&? N
One can check that the GOE and GSE limits agree with
Eq. (2).

C. Shot noise

The shot noise P is written in the form

P£ = (Tr(tt’ — ttTet")). (32)

0

The second term is semiclassically expressed as

16
(Tr(tt't), = 5 2 2 APAA(Tr(A

H ap,an,cy a:ay—dy

Y:ap—cy

It follows that the diagonal contributions to (Tr(tt’)) and

Hence the RS pair contnbutlon to Tr(tt") and the contri-
bution to Tr(tt'tt") from the quadruplets drawn in Fig. 3 (i)
and Fig. 3 (viii) have to be calculated. Moreover we take
account of the additional diagrams shown in Fig. 4.21?2 Sum-
ming up these contributions, we finally obtain the shot noise
in the crossover regime as

P 2N%N§ N\N,(N, - N,)?
P N T N*
0

3
<1+§— 1) +O(1/N).
(35)

Let us denote the O(1) terms of G and P by 6G and &P,
respectively. It can be seen from Egs. (25) and (35) that

SPIPy (N1 - N2>2 36)

6G/Gy  \N,;+N,

which is a universal relation established in Ref. 17.

=

(i11)

(i1)

FIG. 4. The diagrams contributing to the shot noise.

ABADN+ X D ALIALPUTHALARAAD) | =2
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4
(Tr(tt'tt") = — > >
THa|,a2 a:a)—ay,Bic;—ay

Cl,Cy Vi€ —Cp,0:a1—Co
X <AaAszAZei/ﬁ(Su—SB+Sy—S§)
X ((Tr(AAfAAD))). (33)

The diagonal contribution consists of two terms. One term
has a=p and y=46 where we need to set a;=c;. The other
term has @=06, B="7, and a,=c,. We sum up these two terms
and obtain

NN,
ay,ay,c| aa;—ay N

Bici—ay

(34)

IV. COMPARISON WITH A RANDOM-MATRIX MODEL

In this section, a random-matrix model on the GOE-GSE
crossover is numerically analyzed and the results are com-
pared with the semiclassical formulas. In the theory of ran-
dom matrices, a time-reversal invariant quantum Hamil-
tonian with spin 1/2 is simulated by a self-dual real
quaternion random matrix.>” A real quaternion ¢ is a linear
combination

q=4qoeot+qe; t+qgrer+qses, (37)

where g; are real numbers and called the jth component of g.
The bases ¢, e;,e;,e3 can be represented by 2 X 2 matrices

as
(1 o) (i 0)
ey — , €] — .o
0 1 0 —i

(0 1) (0 i) 3
2710/ 27 o (8)

so that ggpey is equated with a real number g, The dual
quaternion of ¢ is defined as

q=qoeo—q1€1 — 422 — 43€3. (39)
When an m X n real quaternion matrix Q has the (j,I) ele-

ment g, we define that the n X m dual matrix Q has the (j,1)
element g;;. If a square real quaternion matrix satisfies Q

=Q, then Q is called a self-dual real quaternion matrix.

The parametric motion of a self-dual real quaternion ran-
dom matrix is realized in the framework of Dyson’s matrix
Brownian motion model.?® It is postulated that the probabil-
ity density function (pdf) of an M X M self-dual real quater-
nion matrix H is
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Tr(H - ¢ "R)?
P(H;7|{R)dH < exp) — 2ﬁ dH (40)
—e
with
M M 3
dH =l dan,[1 11 dHy. (41)
j=1 J<I k=0

Here Hyf) is the kth component of H;. We are interested in
the parametric motion of the matrix H depending on the
fictitious time parameter 7.

At the initial time 7=0, this pdf is reduced to

P(H;0|R)dH = 8(H - R)dH (42)

so that the self-dual real quaternion matrix R gives the initial
condition of the parametric motion. On the other hand, in the
limit 7— o0,

PHYSICAL REVIEW B 82, 125322 (2010)

P(H;>|R)dH > exp(- 2 Tr H*)dH, (43)

which is the pdf of the GSE.

Let us suppose that the elements of the initial matrix R
have only the zeroth components (R is then a real symmetric
matrix) and that the pdf of R is

1
Pgog(R)dR « exp(— ETr Rz)dR (44)
with
M M
dR=[Tdr,I1dr;, (45)
j=1 j<i

which is the pdf of the GOE. Then we can calculate the pdf
of H at a fictitious time 7 as

_ - TR)2
P(H)dH = { f dRP(H; TIR)PGOE(R)}dH o [ f dR exp{— 2M - %Tr RZHdH

1-¢e
) M 4 M g M
(0)y2 (0)\2 (1)y2 (2)y2 (3))2
o -— HN2 - ———— HY) = —— H)"+(H) + (H: dH, 46
exp| = e 2 O e U T SO ) 1) (46)
!
which describes the crossover from the GOE (at 7=0) to S=Iy+i2aWY(H - Ep— inWWh)~'w, (48)

GSE (at 7=«). The components of the elements H;, (j=<1I)
are independently distributed according to Gaussian density
functions.

If an M X M real quaternion matrix Z satisfies

7Z=77=1Iy (47)

(I is the M X M identity matrix), then Z is called a symplec-
tic matrix. If the elements of a symplectic matrix U only
have the zeroth elements, then U is a real orthogonal matrix.
It is known that the measure dH is invariant under the sym-

plectic transformation H+—>ZHZ and the measure dS is in-
variant under the orthogonal transformation S+ UTSU (U7 is
the transpose of U). It follows that the pdf P(H)dH in Eq.
(46) is invariant under the orthogonal transformation
H—U'HU.

We go back to the problem of a chaotic cavity with M
bound states to which two leads with Ny and N, propagating
modes are attached (M =N=N,+N,). We are interested in
the limit M —oo. Let us suppose that the M X M matrix H
describing the scattering in the cavity is a random matrix
distributed according to the crossover pdf in Eq. (46). Then
the N X N scattering matrix S is?

where Er is the Fermi energy and the elements of an M
X N real matrix W are the coupling constants between the
cavity and the leads.

Assuming that the tunnel probability of the leads are 1,
we can see that the eigenvalues of W'W are all M/(p7?),
where p is the eigenvalue density of H at the Fermi energy.
Then a singular value decomposition

W=UDV (49)

holds, where U and V are M X M and N X N real orthogonal
matrices, respectively, and D is an M X N matrix

1 M~
D=—\|—W (50)
TN p
with
- 1N>
W= . 51
<0 (51)

Here O is an (M —N) X N matrix consisting of zero elements.
When the Fermi energy Ep is set to zero (so that p
=\2M/ ), the scattering matrix S can be rewritten as
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-1
—— | ~ M - ~
3:1N+iV2MWT(H—i\/EWWT) W, (52)

where
H=(UV)'"H(UV) (53)
with
- (v o
V= (0 IM_N>' (54

Since UV is a real orthogonal matrix, the M X M matrix His
also distributed according to the pdf in Eq. (46) (with H
replaced by H).

Thus the scattering matrix S can numerically be generated
by using the Gaussian pdf Eq. (46) of H and the relation in
Eq. (52). Replacing the quaternion elements of S by the 2
X2 matrix representations in Eq. (38), we obtain a 2N

X 2N matrix S. It is written in terms of the 2N L X2N, trans-

mission matrix t as
S (r t?) (55)
A\t ')

where r and r’ are the reflection matrices. Then the average
conductance G can be evaluated as

2(N{+N,) 2N,

Somun={ = IEL). 6o

0 J=2N5+1 =1

where the brackets (- --) denote an average over the pdf Eq.
(46). The conductance variance Var G and the shot noise P
can similarly be written as

T (TP — (Tr(ee)? (57)
GO
and
— =(Tr(tt) - Tr(tttt)). (58)
Py

The remaining task is to find a relation between the semi-
classical parameter & and the fictitious time 7. Pandey ana-
lyzed hierarchical relations among the eigenvalue correlation
functions of random matrices and evaluated the form factor
K(k;7) (the Fourier transform of the scaled two eigenvalue
correlation function). For the random matrices obeying the
crossover pdf in Eq. (46), he derived a relation®

K(ki) = K(k:%0) + {K(k:0) = K(k;9)}e 7P (59)
with k| 0. Here K(k;0) and K(k;) are the form factors of

the GOE and GSE random matrices, respectively. They are
known to be®’
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FIG. 5. A comparison of the semiclassical result (curve) and
numerically calculated random-matrix results (error bars) for G/G,,.

k

K(k:0)=2k,  K(ki=)=2. kL0 (60)

so that
k —8Mrk
K(k;T)=5(1+3e ™), k|O. (61)

On the other hand, Nagao and Saito’! semiclassically ana-
lyzed the form factor of a chaotic system with a weak spin-
orbit interaction. They obtained a small k>0 expansion up
to the second order

k K2
K(k;a) = 5(1 + 3¢~ TH) 4 Z{l + (3akTy — 9)e~kTu}
(62)

with a= nyD. Comparing Egs. (61) and (62), we arrive at a
relation

8M7=aTy. (63)

Therefore the semiclassical parameter £=aTy/N is associ-
ated with the random-matrix parameter 7 as

8M (64)
é= N .

In Fig. 5, numerical calculations of G/G at various val-
ues of 7 are compared with the corresponding semiclassical
predictions in Eq. (25) with é&=8M7/N. In the numerical
calculations, we set M=200, N;=20, and N,=5. The error
bars are introduced in order to estimate the statistical errors
due to the fact that the averages are calculated over only 300
samples. Note that the semiclassical formulas are truncated
and hence are valid only for large N, and N,. Nevertheless
we can see a fairly reasonable agreement with the numerical
results.

Similar plots for Var G/Gj and P/P, are also shown,
respectively, in Figs. 6 and 7. The semiclassical curves are
drawn by using Egs. (31) and (35). Since we again find rea-
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FIG. 6. A comparison of the semiclassical result (curve) and
numerically calculated random-matrix results (error bars) for
Var G/ G},

sonable agreements, it can be conjectured that there is an
equivalence between the semiclassical method and random-
matrix theory.

In the case of the GOE-GUE crossover, the corresponding
random-matrix model can analytically be treated® and the
results can be compared with the semiclassical formulas.?” It
seems possible to apply similar techniques to the GOE-GSE
crossover. For example, the diagrammatic perturbation
theory is able to give the leading terms of the transport
properties.'*~!7 It would be interesting to compare the semi-
classical formulas with such analytical results and confirm
the equivalence mentioned above.

V. SUMMARY

We studied a chaotic quantum transport of an electron
with spin-orbit interaction in a cavity. Our approach is based
on the semiclassical theory. The key ingredient of the theory
is the universal statistics of the stability amplitudes. The
electron diffusion in the position and momentum space is
related to the escape rate, and the spin diffuses on the Bloch
sphere due to the spin-orbit interaction, where the momen-
tum variable plays the role of a stochastic magnetic field.
Consequently the crossover parameter depends on the diffu-
sion constant of the spin. The spin-diffusion terms appear in
a non-Abelian way along the classical trajectories. The spins
along the trajectories interfere with each other, resulting in
the change in the total spin. For instance, Eq. (23) has both
singlet and triplet contributions. These kinds of interference
effects seem to play a crucial role.

In our calculation of the physical quantities such as the
average conductance, only the first several terms of the re-
sulting expansions were worked out. Such truncated results
are valid only when the channel numbers are large. In order
to obtain the full expansions, a more systematic calculation
of the spin-diffusion terms would be necessary. Although our
expansions are truncated, they are still useful in the experi-
mental point of view, because the channel numbers can be
very large. Moreover the GOE-GSE crossover can be real-
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FIG. 7. A comparison of the semiclassical result (curve) and
numerically calculated random-matrix results (error bars) for P/ P,.

ized when the spin-orbit interaction is controlled by applying
an electric field. Therefore we believe that an experimental
test of our theory is, in principle possible.

In addition to the transport properties analyzed in this
paper, the shot-noise variance is also an important quantity,
which can be treated in an RMT framework.*? It seems pos-
sible to apply the semiclassical method to the shot-noise
variance. More ambitiously, one might be able to calculate
arbitrary order cumulants of the conductance and shot noise
in a semiclassical framework, as the RMT approach has al-
ready made a progress in that direction.*!

Our theory is valid in the case that the dwell time of the
electron is much larger than the Ehrenfest time. When the
Ehrenfest time is relatively large, the resulting corrections
should be considered.*” In addition, the spin-diffusion
mechanism might depend on the specific form of the spin-
orbit coupling.!>?° These problems are also interesting in
experimentally realizable situations.
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APPENDIX: SPIN-DIFFUSION TERMS

In this appendix, we present the spin-diffusion terms con-
tributing to the average conductance, conductance variance,
and shot noise. Here 7, and ¢; are the times elapsed on the
loop L; and encounter E;, respectively, and a=y§0D. These
spin-diffusion terms were evaluated by using MATHEMATICA.

1. Average conductance

The spin-diffusion terms contributing to the average con-
ductance (corresponding to the diagrams shown in Fig. 2) are
listed below.

125322-9



KEIJI SAITO AND TARO NAGAO PHYSICAL REVIEW B 82, 125322 (2010)

() (Tr{AL Ap AL ARAL AL AL Ap AL (AL Ap AL Ap AL Ap AL ApAL)'D)
=((Tr{AL,Ap, AL Ap Ap (AL) ™ (Ag ) (AL) ™ (Ag) ™ (AL)™'H)
1

3
=—+—e

2 2

—a(2t)+21,+2T+2T3) + ge—a(ZT2+2T4) + ge—a(211+212+2T3+2T4) _ 3e—a(2tl+2t2+2T2+2T3+2T4)-

(i) (TrlAL Ap AL AL AL (Ap )AL AR AL (A, Ap (A) 7 (Ap) ™ (AL) " Ap ALAL AT
1 3 3 3
_ -1 SIA LY L2 a2y _ 2 a2 42Tya2Ty) | D —a(2i 4264275427,
=(Tr{AL AL AL (A )AL (AL ) (Ag) AL4AE2AL3}>>—2 5¢ e % e +5€ EARE

+ 3e—a(2t1+2t2+2T2+2T3+2T4).

(i) (TAL A Ay Ag Ay Ap Ay (Mg )AL AL A Ay (Ap) ™M (AL) ™ (Ag ) (AL) T (AL) ALY
1 3 3 3
=<<Tr{AL2AE2AL3AE|AL4AL3AE1ALZAEZ(AL4)_1}>>=E _ Ee_a(2tl+2T3+2T4) + Ee_a(2[l+2t2+2T2+2T3) _ Ee—a(2zz+2T2+2T4)
+ 3e—a(211+212+2T2+2T3+2T4).
(iv) <<Tr[AL1AE1AL2(AEl)_]AL3AE2AL4(AE2)_]ALS{ALIAEI(ALZ)_I(AEI)_]AL3AE2(AL4)_](AEZ)_]ALS}T]»

1 3 9 3
=<<Tr{AL2(AE1)_1AL3AE2AL4AL4(AE2)_1(AL3)_1AE|AL2}>>=E - Ee_“ZTZ + Ee_“(zTﬂT“) - Ee_“zT“.

v) <<Tr[AL|AEIALzAEzAL3(AE2)_1AL4(AE1)_1AL5{AL1AE1(AL4)_1AE2AL3(AE2)_1(ALZ)_I(AEI)_IALS}T]»

1 3 3 3
:<<Tr{AL2AE2AL3(AE2)_1AL4AL2AE2(AL3)_1(AEZ)_IAL4}>>:5 - Ee_“2T3 + Ee‘“(2T2+2T4) + Ee‘“(2T2+2T3+2T4).

(vi) <<Tr[ALlAElALZAEIAL3AE1AL4{AL1AEIAL3AE1AL2AE1AL4}T]>>= <<Tr{AL2AE1AL3(AL2)_1(AEI)_I(AL3)_1}>>
:l + Ee—a(2t1+2T2)
2 2

+ Ee‘a(2ll+2T3) + Ee—a(2T2+2T3) _ 3€_a(2t1+2T2+2T3).

(vii) <<Tr[AL1AE1AL2(AEl)_IALSAElAL4{AL1AE1(AL2)_1(AEl)_l(ALS)_IAElAL4}T]>>=<<Tr{AL2(AE1)_1ALSALSAEIALZ}»

=l _ Ee—aZTz + 2e—a(2T2+2T3) _ ge—¢12T3.
2 2

(viii) <<Tr[AL1AEIALZAElAL3(AEl)_]AL4{AL1AE1AL3(AE1)_1(ALZ)_I(AEI)_lAL4}?]>>=<<Tr{AL2AE1AL3AL2AE1(AL3)_1}>>

—— Ee—a(2t1+2T2) + ze—a(2t1+2T2+2T3) _ Ee—a2T3.
2 2

(i) (CTHAL Ap A (M) Ap (Ar) Ay (A Ap (A) 7 Ap Ay (A ) Ay FIN=(Tr{AL (A )AL (M) (Ag) ' ALD)

3 3
e~ 4 _e—a(2t|+2T3) + _e—a(2t1+2T2+2T3).

N | W

1
2
2. Conductance variance

The spin-diffusion terms contributing to the conductance variance (corresponding to the diagrams shown in Fig. 3) are listed
below.

(1) <<TI‘[AL,AEIALz(AEl)_1AL3{AL1AEI(ALZ)—I(AEI)—1AL3}¢]Tr{AL4(AL4)T}>>
—((2 TH(A, ) =~ 2+ 62T
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(i) (Tr{A, Ap ALALAL (A Ap AL Ap AL )TTHA, Ap Ay Ap Ay (A Ap AL AEA)TH)
=((Tr{AL (ALY = 1+ 3712275,
(i) (TrfAL Ap A Ap Ay Ap A (A A Ay ) ITH{A Ap Ay (Ar Ap Ay Mg Ay ApAL)™)
=<<|Tr(AL2AE2AL3AE1)|2>> =1+ 3€—a(2t1+21‘2+2T2+2T3) .
(iv) (Tr{A, Ap Ay Ap Ap(Ap Ap A )TVTH{A, Ap Ap (A Ap Ay Ag A)'D)
=((|Tr(A LA )P)) = 1+ 372020,
(V) (TAL A AL AL AL (A Ap (ML)~ Ap, A FTTHA,L (M)~ Ay (Ap) ™AL AL (AL )T (AL (Ag) ALY
=({Tr(AL,AL)P)) = 1 + 371225,
(Vi) (Te{AL Ap AL AL AL Ap Ap (A Ap Ay )TBTIAL (Ap )™ AL AL (Ap) ™ (AL) T (Ap) T (AL) T (Ag) ALY
=(({Tx( ALz AE2 AL3 AEI)}Z» = | 4 321+ 242Ty42T3)
(vii) ((Tr{Ap Ap Ap Ap Ay (Ap Ap Ap)TVTIA, (Ag )" Ap (AL (Ap )7 (AL )™ (Ag )" AL T
=({Tr(AL ALY = 1+ 37212,
(viii)  (Tr{A Ag Ay (Mg Ap Ay )VTr{A, Ap Ay (Ap Ag A )T =((Tr(ALA] )2) =1 43¢ 037210,
3. Shot noise

The spin-diffusion terms contributing to the shot noise (corresponding to the diagrams shown in Fig. 4) are listed below.

() (TdAL Ap AL (AL AL AL AL AL AL A AL (Ap) T AL £ Ap A Ap, (AL )7 (Ap) AL HD)
=((Tr{(AL)*h) = = 1 +3e7T5.
() (T, A, (8, (80 0 8 B (8)7 8 (B Ay 0, A, (80,7 ()8, F D)
=TH{(A} AL AL D) == 1+ 32T T),
i <<Tr[AL1AE1AL2(AL3AElALz)TALzAElAM(AEI)_IAL5{AL1AE1(AL4)_](AEI)_IALS}T]»

=<<Tr{(AL4)2}>> =—1+ 36_2”T4.
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